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SUMMARY

The transient one-dimensional Burgers equation is solved by a mixed formulation of the Green element method
(GEM) which is based essentially on the singular integral theory of the boundary element method (BEM). The
GEM employs the fundamental solution of the term with the highest derivative to construct a system of discrete
first-order non-linear equations in terms of the primary variable, the velocity, and its spatial derivative which are
solved by a two-level generalized and a modified time discretization scheme and by the Newton—Raphson
algorithm. We found that the two-level scheme with a weight-67Gand the modified fully implicit scheme with

a weight of 15 offered some marginal gains in accuracy. Three numerical examples which cover a wide range of
flow regimes are used to demonstrate the capabilities of the present formulation. Improvement of the present
formulation over an earlier BE formulation which uses a linearized operator of the differential equation is
demonstrated© 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Burgers equation, which represents a combination of viscous and inertial components, is a quasi-
linear partial differential equation capable of exhibiting some very unique phenomena. When the
inertial term is dominant, its solution resembles that of the kinetic wave equation which displays a
propagating wave front and boundary layers. On the other hand, viscous dominance causes
dissipation and smearing of the solution wave front.

The primary mathematical difficulty involved in the solution of the Burgers equation arises from
the sudden change in the solution profile over small regions. Research interests over the years have
dwelt on accurately representing the scalar values in these areas of rapid change. The greater number
of analytical solutions, which are summarized by Benton and PlatZntas been obtained for
infinite domains by the Cole-Hopf transformation,which simplifies the non-linear Burgers
equation to a linear diffusion equation.

The large array of numerical solutions of the Burgers equation has been based on various versions
of the finite difference and finite element methods (FDM and FEM). Flefataried out a thorough
treatment of various Galerkin FE formulations and applied them to the propagating shock problem.
His results and conclusions suggest no clear-cut advantage of his finite element formulation over
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other traditional methods such as the finite difference technique. Varoglu andaiopted a finite
element approach which used isoparametric space-time elements and incorporated the method of
characteristics. their method, which is actually an improvement on earlier work by Bonnerot and
Jamef yielded good results for a wide range of flow parameters. Eppérapplied a linear
semigroup linearization to solve non-linear parabolic equations. In a subsequefitheotsed a
modified version of the same technique to decouple the non-linear convective term of a parabolic
partial differential equation to obtain a very accurate prediction of the scalar profile. A more recent
work based on the finite analytic method has been that of Onyejékwe used an adaptive grid
algorithm to resolve the steep profiles of the dependent variable. Applying the boundary element
method (BEM), Kakuda and Tosaaused the free space Green function for the linearized
differential operator and solved the integral equations in each subdomain.

Here we improve on the BE solution of Kakuda and To$8ke an approach, referred to as the
Green element method (GEM), which derives its fundamental solution from the term with the highest
derivative so that the non-linear inertial or convective term is treated more accurately. The
improvement in the accuracy of the numerical solution is demonstrated with the first example. The
successful application of the GEM to linear and non-linear differential operdtavkjch hitherto
had proved difficult with the boundary element theory, provides the motivation for the current work.
Three numerical flow problems governed by the Burgers equation are used to demonstrate the
capabilities of the current formulation. The numerical results show that the GEM is capable of
solving the Burgers equation for flow regimes which cover small and large values of the viscosity
parameter.

2. GREEN ELEMENT FORMULATION

The partial differential equation that governs the non-linear fluid flow phenomenon of shocks or wave
propagation, widely known as the Burgers equation, is given by

Pux,t)

B _u(x,t)au(x’t) ou(x, t)

8x+ ot

on Xp < X < X, 1)

in whichv = 1/R, is the reciprocal of the flow Reynolds number defined by appropriate length and
velocity scales of the flows andt are the spatial and temporal independent variables respectively and
L = x, — x_is the length of the flow domain. In addition to (1), boundary and initial data have to be
prescribed for the problem to be well posed. The boundary conditions are either of a Dirichlet type
which specifies the velocity,

U(Xo. t) = Go(D), u(xe, ) =g, (2a)
or of a Neumann type which specifies the spatial derivative of the velocity,
ou(0,t) aulL,t)
FYaR fo(t), rvan fL(), (2b)

or an appropriate combination of the two. The initial data specify the velocity at the initialt§ime
uX,ty) = Uy, Xo < XX (2¢)

The Green element formulation is based on the Fredholm singular integral theory which employs the
free space Green function of the term with the highest derivative or the 1D Laplace differential
operator. By adopting this approach, we avoid linearizing the differential equation to enable us obtain
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the free space Green function for the problem. The free space Green function is obtained from the
solution to

d°G

W:cﬁ(x—xi) on —oo<X< ™ 3
in an infinite space in the-dimension, wheré(x — x;) is the Dirac delta function and is commonly
referred to as the source point. The general form of the solution to (3) is given by

X —X;| + Kk
G(x,xi):T',

(4a)
wherek is an arbitrary constant. (Althougdhis an arbitrary constant, its value has to be judiciously
chosen, otherwise some of the diagonal elements could have zero value. Certainly the Jalue of
cannot be set to zero in our formulation, because this leads to the diagonal coefficients of the flux in
the global matrix being zero, thereby producing a singular matrix.) We elect toteainity. With

this value ofk,

X —x]+1
G(x,xi)=+.

(4b)

G(X, x;) is referred to as the free space Green function, the fundamental solution or the unit response
function. It is the response of a system governed by (3) due to an instantaneous unit input. In one
spatial dimension, Green’s second identity is restated for two func@asdu which should be at

least twice differentiable in space:

G du dG

X=Xg

Introducing (1) and (3) into (5) yields

X du  du dG u
ué(x—x-)—v‘lG<u—+—>}dx= [u——G—} , (6a)
LO [ ! ax ot dx ax

X=Xg

which is simplified further to

dc  _au (Tt du  du
—),U(Xi,t) + [UW— G&] + v JXO G(U&‘Fﬁ)dx = 0, (Gb)

X=Xg
where/ takes the value of unity if; is within the intervalx, < x < x_ andZ =1 if x; is at the end
points of the flow length.

The integral representation of (1), given by (6b), is discretized by piecewise linear segments or
elements over which a distribution of the primary variabland its spatial derivativegu/ox is
prescribed. We have employed a linear distribution of those quantities over each element. By
following this approach, the numerical solution comprises two quantities at each nodeane.
au/ox, which is why it is a mixed formulation. The advantage of such a mixed formulation is that the
primary variableu and its spatial derivatives are approximated to the same order of accuracy. In other
words, u and du/dx haveC® continuity. This approach is in contrast with those of other numerical
methods where the flux is treated as a secondary variable that is obtained from the primary variable
by numerical differentiation, thereby reducing by one order the accuracy of the spatial derivative of
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the primary variable. The flow domain is discretized iNtelements and in each elemerdndou/ox
are approximated by linear interpolation functions in space,

au(x, t) 8u§ e OU3
- O+ Q5. @)

u(x, t) = QIug(t) + QSus(t),

in which the superscripé denotes a typical element as shown in Figure 1 and the interpolating
functions areQf({) = 1 — { andQ5({) = ¢, where{ = (x —x§)/I8,0 < { < 1, is a local co-ordinate
that has its origin at node 1 of theth element andf is the length of the element. Within this typical
element the integral equation (6b) is

dG " % ou  du
LT - _c= -1 -~ _
28U, 1) + [u o Gaxl xi+v J G(u 8x+ )dx_O. (8)

Introducing (7) into (8) and making use of the fact thi&(x, x;)/dx = [H(x — x;) — H(X% — X)]/2,
whereH is the Heaviside function, equation (8) becomes

1 aus au
5 {v(—ug +u§ +8—X1 —(F+1) 2)

! aue aus dug du
+ |EL (1°¢+ 1)[(9 u§ + Q5 )( 105 8x2> + 05 dtl Q5 dtz}dg} (9a)

when the source node is at node 1 of the element and

1 g au§
2{<U1—U2+(|e+1) )

X o

e 0UT

1
+ IE J [Ie(l — é’) + 1] [(Qiui —+ qug)( 11— o e dul B dU2
0

ol
e ”2>+Q1 = zdt]dc} 0 (%)

when the source node is at node 2 of the element. Equation (9a) and (9b) are combined and expressed
in matrix form as

. o 0UF e o OUf  _ dUf o
v Rjuf + L — o + Viiuf — ™ +TIJ i =0, ij1=1,2, (10)
xy Element e x
& o

Figure 1. Definition sketch for linear 1D element
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in which the elemental matrices are

R%:[—ll _11} ij=12 (11a)
1 -1+ -
3418 342107
Tﬁ=lej QO ~ z|+1)dc—[3++2|e Siz,e} hi=12, (1)
1
V.u—lej QGOXAOEIL -Gl +1de, Lj =12,
e lET4+10 2+ Ve 443 241° (1)
W=12( 240 4431 A2 241 441e]

Equation (10) is a system of non-linear first-order differential equations in time which can be solved
for u and du/ox at the nodes by first employing an appropriate approximation of the temporal
derivatives and then a non-linear solution algorithm. We elect to use the two-level time discretization
scheme that approximates the temporal derivative =att,,, = t,, + «At so that equation (10)
becomes

oug ou?
Jm+1 I,m+1
[ (R U me1 + L X ) + ViU a1 anXH ]

o} au,m 1 . .
+(1—o)|v ujm+Llj X +VIJ| M +Tij Kt(uj,erl_uj,m) =
ijl=12 O<a<l (12

in which « is a time-weighting factor, the subscripts+ 1 and m denote the current and previous
time levels respectively andt =t,,,, —t, is the time step. We also elect to use a modified fully
implicit scheme that approximates the temporal derivative, at as

duf du? duf,

j.m+l J,m
il fT —(qu+l U ) + (1 — o) 1<a<2, (13)

dt

so that equation (10) becomes

auy
Jm+l I,m+1
(le J.m+1 + L?J ax ) + Vuluj m+1 8;

o du? ..

+ Ti?(ﬂ(uje,erl —Uim)+ (1) d‘t’m) =0, ijl=12 1<a<2 (14
The Newton—Raphson (N-R) algorithm is used to simplify the system of non-linear equations. The

N-RE algorithm is introduced into both time discretization schemes of the GEM, equation (12) and

(14). In the usual way of implementing the algorithm, a solutmfrﬁprl, qﬁl mt] T is first proposed for

both equations and updated by

ue k+1 e, k+1 T ue k+1 e, k+1
j m+1° ¢J m+l J m+1’ ¢J m+1 J m+1° A¢J m+1 ’ (15
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where¢ = du/dx, the superscript T denotes vector transpositicaindk + 1 denote the previous and
current iteration values respectively and the increment given by the second term on the right-hand
side is obtained from the matrix equation

A e, k+::|l.-
k J.m+
Ji?*m+1(A¢e,k+l ) = I|J m+1- (16)
j,m+1

In (16) the known vectoE; is the quantity on the left-hand side of either (12) or (14), with valuas of
and¢ evaluated at the current timig;, but at the previous iteratiok, and the Jacobiaﬂﬁ:,"n 11 takes
the form

1
a(VR + V| +—T§
J,? ﬁH_l ( |JI¢I m+1) At U L 0<a<l, (17)
(VL + Viju |erl1<w+1)

For the generalized two-level scheme and

38 K VRe + Vlj|¢| m+1 + Te

ij,m+1 — ’

e e 6.k
VL + Vlj|u| m+1

1<a<2, (18)

For the modified fully implicit time discretization scheme. The final step is to assemble equation (16)
for all N elements so that two degrees of freedom are maintained at each node and to implement the
boundary and initial data given by (2). The resultant global equation is given by

AUt
Aik,-,mH( . >=Shm+1 (19)
Adfia

The global coefficient matrix is banded with a half-band width of two and with a row dimension that
is twice the number of elements. Equation (19) is solved at each time step for as many number of
times as necessary until convergence is achieved by

(AUl Al - [AUSEL 1 AT < (20)
where ¢ is the convergence tolerance, a predetermined small quantity that reflects the level of
accuracy that can be accommodated.

3. NUMERICAL EXAMPLES

Three numerical examples are used to demonstrate the capabilities of the current numerical model.
The first two examples have analytic solutions which serve as bases for comparison with our
numerical results, while the GEM solution for the third example is compared with that of the finite
element method.

The first example is an initial sinusoidal wave which is allowed to propagate and diffuse within a
confined flow domain in the-direction. The problem has the boundary conditions

u@,t) =0, ul,t)=0, u(x, 0) = sin(nx). (21)

The exact solution to this problem, in the form of an infinite series, has been provided by Cole.
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The second example is an initial discontinuous wave form which is allowed to diffuse into a
continuous wave form while at the same time being propagated in time alongdinection. The
initial and boundary conditions are given by

1, x<0,
ux,0) = {
0, x>0, (22)
u(—ook, t) =1, u(oo,t) = 0.

The exact solution, obtained by the Cole—Hopf transform, is given by Lightlsi#
1

X—1/2 —X x—t
”ex'“( 2 )em(mvt))/ erfc<2m))

The third example used in demonstrating the capabilities of the current numerical model, which
has also been employed by other investigatdfshas the initial and boundary conditions.

ux,t) =

(23)

1, X < 5,
ux,0)=16-x, 5<x<86,
0, X > 6, 24)
u(—100,t) =1, u(20,t) = 0.

The time and spatial discretizations and other simulation data for the three numerical examples are
summarized in Table 1.

First numerical experiments were carried out to determine the optimum weighting factor of the two
time discretization schemes that were used in approximating the temporal derivative (see equations
(12) and (14)). The benchmark solutions of examples 1 and 2 and the range of values for the viscosity
term in example 3 provided the basis for evaluating the accuracy of these time discretization
schemes. In order to numerically determine the time scheme which most closely reproduces the exact
solution, five values of the time-weighting factor were examined0.5, 067, 1.0, 1.25 and 15. For
this study the performance of the schemes is assessed by both the mean absolute deviation and the L-

Table |. Data for GEM simulations

End point
co-ordinates Flow Time  Number of Maximum
—  parameter step elements, Spatial number Figatse
Example Xo XL v At N discritization  of iterations number(s)
1 0 1 1 001 20 Uniform 4 Table Il
0 1 10 0-.01 40 Uniform 4 Table IlI,
Figure 2
0 1 10 001 100 Uniform 6 Table 1V,
Figure 3
0 1 16 002 50 Non-uniform 6 Figure 6
0 1 16 002 100 Non-uniform 6 Figure 7
0 1 1¢ 002 Non-uniform 6 Figure 8
2 15 25 0025 100 Uniform 5 Figures 4, 9
0.7 13 16 0-.01 100 Uniform 6 Figures 5, 10
3 100 20 1 @2 49 Non-uniform 4 Figure 11
100 20 10 01 87 Non-uniform 5 Figure 12
100 20 16 005 149 Non-uniform 6 Figure 13
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Figure 2. Error plots of time discretization schemes: exampbe=1,10"1

2 norm, with each providing a method of determining quantitatively the error estimates between the
numerical and analytic solutions. Graphical displays of error profiles at various times=fd0—!

and 10 2 for example 1 are presented in Figures 2 and 3, while those for example 2 are presented in
Figures 4 and 5. Although the flow domain for example 2 is infinitely extensive, we have used finite
domains,—0-7 < x < 1.3 for the casey = 1072 and —1.5 < x < 2.5 for the casev = 107%, so that

the exact solutions at the end nodes satisfy the specified boundary conditiors -abo and co
throughout the simulation times. The performance of these time discretization schemes from Figures
2 through 5 is evaluated by determining which pair of weights from the two time schemes yields the
best results. We observe that for example 1 (Figures 2 and 3), for both values of viszasify
(two-level time schemes) and= 1.5 (modified fully implicit) produced the best results. The worst
results for the same figures were producedxzby 1-0 (two-level scheme) and = 1.25 (modified

fully implicit). Similarly, for example 2 (Figures 4 and 5) the best results were displayedb9-67
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Figure 3. Error plots of time discretization schemes: exampbe=1,10—2
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Figure 4. Error plots of time discretization schemes: exampbe=2,10"1

(two-level scheme) and = 1.5 (modified fully implicit) and the worst results by = 0-5 (modified
fully implicit) and « = 1.0 (two-level scheme).

Owing to the cluster of numerical results produceddfet 1-25 (fully implicit) and o = 0-5 of the
two-level scheme (Figure 5), only those of the former are represented. In the same figure also there is
an overlap of results obtained from= 1.5 (fully implicit scheme) andx = 1.0 (two-level scheme),
with the former giving results that are marginally better. Overall it should be observed that for cases
where a pair of error profiles or appears very close (Figures 3-5), it suggests that the two weights of
different time schemes yield very close results. On the basis of the pair that yields the smallest error,
the schemes with = 1.5 (modified fully implicit) andz = 0.7 (two-level scheme) are recommended
for approximating the temporal derivative in the Green element formulation.
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Figure 5. Error plots of time discretization schemes: exampbe=2,10-2

© 1997 by John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOR4: 563-578 (1997)



A. E. TAIGBENU AND O. O. ONYEJEKWE

572

LOT XS6T 0T X 96T 0T X 28T 0T X /8L 0T X692 0T X287 0T X0T'§ 0T x€Z8 Jou3
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 00T
£2€/00 £2£.00 9TE/00 G9EL00  CTET20 862T20  6GZ6E0  ¥.26E0 TZY8E0  9ZBESH  ZEBEEO GZ8EE0 060
€GZETO  £S2ZETO ZVZETO  ZEEETO  968SE0 006S€0  €£/£590  TTHS90 0790 968290 168290 €¥9290 080
296970  TG69T0O TL0LTO  €602Y0  £602H0 95220 2T/E9.0  2TH9.0 LE6G/0  E£YEESH  6VEELSO €00£80 0L
/2€8TO  6IESTO GSY8TO  2Z6IV0  ¥Z6Ti0 6222V 0£59/0  TSS9.0 9£99/0 £V/E60  £9.£60 €60 090
169.T0  /89.T0 v28.T0  T68LE0  T68LED 1/28€0  T000.0 /66690 00500  LEZ¥6O 65260 98T¥60 0S50
9GGGTO  ¥SGSTO T89STO  8E/TEO  PELTEO 62T2E0  60V6S0  88E6G0 00T090 066580 966580 002980  0OF0
¥Y6E2TO  £6ECTO 86v2T0  8vrv20  Zviieo 88/¥20 00£9¥0  T.2Z9tO 66970  9¥90.0  0£90.0 TE0TL0  0E0
€/5800  G/S800 059800  2GS9TO  /¥S9TO 66/9T0  €£2Z9TEO  /6STEO €/T2E0  G000SO  9.6610 €0r0S0 020
SLEV00  YLEV0D STYY00  E£YES00  OVES00 €/¥800 920910  TTO9TO /2€9T0 698520  L¥8G20 LTT920 0OT0
000000 000000 000000 000000 000000 0000 000000 000000 000000 000000 000000 000000 000
10ex3 NER) n3g 10eX3 NER) w3g 10ex3 NER) n3g 10eX3 NEB) N3g X
(TN (200N (GZ:0¥)n (500 “X)n
T 8|dwexa 1o} ,0T =10} SUOHN|OS NI pue TG ‘10ex3 ||| d|qel

OT X8GT 0T X€ZT 0T XGeZ 0T X€8°T OT X¥.T 0T X0rT OT X9ZT Q0T X696 Jou3
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 00T
€/G€00  0SSE00 67/£00 690210  €£02T0 0TEZTO 610220 010220 690220  /Zv920  TEVIZO 98€920 060
6./900 9£.900 ZITL00 28220 ¥T.220 GyZeed  OISTYO  L8YTH0 8Y9TV0  E£¥66Y0 L6610 Z166v0 080
¥62600  ¥£2600 8¥/600 T660E0  0060£0 GE9TEO  +GE9S0  STE9S0 2£9950 90890 850890 8TT890 0.0
0.80TO0  Z0S0TO OOYTTO  GOBGED  208SED 2.99€0  LETS90  6.-G90 G8G590  6£06.0  LT06.0 Zre6L0 090

L9ETTO 962110 LI6TTO  8STLEO ¥S0L€0  G/6/EO 89290 €/T/90 010280 996180 9/£280 0S50
1G/0TO0 989010 692TTO  26LYED  9691E0 6/GG€0 82829  £7.290 B6TGE90  8869/0  9269.0 Llv110  OvO0
TOT600 90600 985600 061620 OTT620 G98620 £19250  2€SZS0 ¥82€S0  Zv.v90  £.9t90 192590 0€0
985900 /5900 006900 6.6020 226020 €/YT20  €9//50  869.E0 G628€0  8T99¥0 8G90 25070 020
YSPE00  £EYE00 8T9S00  +S60T0  ¥260T0 GTZTTO  00L6TO  $996T0 G666TO  69EYZO  GEEHZO L[T9%20  0T0
000000 000000 000000 000000 000000 0000 000000 000000 000000 000000 000000 000000 000
10eX3 NELR) n3g 10eX3 NER] n3ag 10ex3 NER) n3ag 10eX3 NER)] N3g X

(zz:0)n (0T0°0 XN (¥0-0 X)n (200N

T 9|dwexa 1oy T=J0} SUONN|OS NIO pue NIg 10ex3 || d|geL

1997 by John Wiley & Sons, Ltd.

)

INT. J. NUMER. METHODS FLUIDS, VOL.24: 563-578 (1997)



573

MIXED GREEN ELEMENT FORMULATION

OT XG6€ 0T X/2°T 0T XGe€ 0T X92¢C 0T X059 0T X€Z€ OT X028 0T x90% Jou3
000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 000000 00T
6ET800  6ETS00 86900 T90S€O  L9TSE0 ¥62€€0  9YSSSO  L26SSO 99250  £85950 080990 8Y€ES0 860
TI6VTO0 616710 822ZVT0 25250 2TLlLZSO €GZTSO  GO6¥.0  88EGLO £9G€/0 /22180 6T9T80 98€6.0 960
0696T0  80.6TO 166810 6/1.59 9G6/50 9££/50  6TT8.0  0ZE8LO 878//0 866680 0E£060 668880 760
219220  9£9220 050220 2Z.¥8S9  GGG850 99¥850  98G//0  G¥9..0 0£9./0 GS9£60  PELE60 G/9260 260
6STP20  £8T¥2O 99/£20  T18/.S0 218150 056150 S629/0  TTE£9.0 Lvv9/0  T168Y60  L.2S60 L0vPY60 060
£98€20  /98£20 906£20  £G.TSO  0SLTISO 210250 80.890  80.890 656890 00T¥60  LTTv60 G9/€60 080
8T08TO  /T08TO G608TO  ¥r06£0  THO6E0 ¥926€0  TOPZSO  86£2S0 119250  GVELLO  LYVELLO 9052.0 090
9T0ZTO0  9T0ZTO 8902TO 821920 921920 G8Z9Z0  78ZSEH  6.2GED TOSSED  2B6LESO  88.EG0 090¥S0  0%0
600900 600900 9£0900 260STO  TBOTETO  9ELLTO  YELLIO ¥S8.T0  2S¥120  6v¥.20 82920 020
000000 000000 000000 000000 000000 0000 000000 000000 000000 000000 000000 000000 000
10ex3 NER) n3g 10ex3 NER) n3g 10ex3 NER) n3g 108X3 NER) N3g X
(0N (0zZ'T 0N (80N (F-0 %)

T s|dwexa 10} 0T =)0} SUONN|OS WID pue NG 1ex3 "Al 3|qeL

INT. J. NUMER. METHODS FLUIDS, VOR4: 563-578 (1997)

© 1997 by John Wiley & Sons, Ltd.



574 A. E. TAIGBENU AND O. O. ONYEJEKWE

ulx,t>

Figure 6. Gem solutions: example 1= 102

Because the mixed Green element approach which we have adopted in this work is based on the
same singular integral theory as the generalized BEM employed by Kakuda and T9sakhave
compared our solutions with their for example 1 at the times their solutions were tabulated. Our
values of time and spatial discretizations and maximum number of iterations allowed at each time
step are the same as theirs. Tables II-1V show both numerical solutions and exact solutions for values
of v =1,10"! and 102, together with the computed error estimates. The L-2 normal errors of the
GEM are less than those of the generalized BEM formulation of Kakuda and TSsakall times
and for all Reynolds number values examined. These results show the loss of accuracy when the
differential equation is linearized within the element, which has been avoided in the mixed GEM.
Also, the simple nature of the fundamental solution employed in the mixed GEM formulation which

| T |

Figure 7. Gem solutions: example 1= 102
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Figure 8. Gem solutions: example 1= 1074

made it possible for exact integration of the elemental integrals enhanced the accuracy of the
numerical solutions, in contrast with the more complicated fundamental solution used by Kakuda and
Tosaka® which required the use of quadrature techniques in evaluating the elemental integrals. This
result further buttresses our earlier conclusions that a simple fundamental solution is preferable to a
more complicated one even if it involves more domain integratioris=°

The GEM solutions of the velocity profiles for= 102,102 and 10 for example 1 are
presented at various times in Figures 6-8. These solutions compare quite favourably with the
solutions of Varoglu and Fim(not presented), which reflect the general behaviour of the solution in
which a sharp front develops close xe= 1 at early times and decays later as a result of viscous
action which becomes pronounced in the vicinity of large gradients of the velocity.

The exact and GEM solutions for= 10~ and10~2 for example 2 are presented in Figures 9 and
10. The sharp profile of the velocity for= 10_, is reproduced by the GEM and it is significant to
note that the numerical solutions do not exhibit any oscillations.
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Figure 9. Exact and GEM solutions: examplev2: 10!
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Figure 10. Exact and GEM solutions: examplev2; 102
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Figure 11. GEM and FEM solutions: exampley3= 1071
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Figure 12. GEM and FEM solutions: exampley3= 1071
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Figure 13. GEM and FEM solutions: exampley3= 10~2

A comparison of the GEM solutions with the finite element solutions of Varoglu and® Fomn
v=1.10"1 and 10 2 for example 3 is presented in Figures 11-13. The steep velocity front of the
propagating wave is reproduced for larger values of the Reynolds number by the GEM with no
numerical dissipation and oscillation. Both numerical solutions are in good agreement.

4. CONCLUSIONS

A mixed formulation of the Green element method for the transient 1D Burgers equation has been
presented. It follows earlier GEM formulations which had been applied to two-dimensional problems.
By employing a simple kernel of the linear part of the differential equation, the singular theory of the
BEM is implemented in an exact fashion within each element and then all elemental inputs are
aggregated to form a discrete system of non-linear equations which are solved by the Newton—
Raphson algorithm. Comparison of the two-level generalized and modified fully implicit
discretization schemes shows that the scheme with0-67 and the fully modified fully implicit
scheme witha = 1.5 are marginally better in approximating the temporal derivative. The GEM
solutions are superior to the generalized BEM solutions of Kakuda and T&%dlexause the
differential operator was not linearized in deriving the free space Green function. For the three
numerical examples solved, the GEM gave acceptable solutions for a wide range of viscosity values
using moderate sizes of time step and spatial increments. These results demonstrate one other useful
computational strength of the Green element application to non-linear problems.
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